

Coloring of Plastics Color Education

Presented by: The Color and Appearance Division Education Committee

Originally Created July 2007

Last Modification May 2020

Color Education Purpose and Scope

This Color Education presentation provides fundamental concepts of color and appearance for use by anyone educating students, professionals, and organizations.

The scope of the presentation covers colorimetry with definitions and images selected by the Education Committee members of the Society of Plastics Engineers (SPE) – Color and Appearance Division (CAD) Board of Directors that best represents the theory and practice used in today's coloring of plastics industry.

Color Education Sections I – VI

- I. <u>Color Science</u>
- II. <u>Color and Appearance</u>
- III. Color Measurement and Test Methods
- IV. Colorants for Plastics
- V. <u>Plastics (Polymers)</u>
- VI. <u>Definitions</u>

Opticks " ... if the Sun's Light consisted of but one sort of Rays, there would be but one Colour in the whole World...

Light

- Electromagnetic energy (electromagnetic radiation)
- Electromagnetic energy interacts with matter

Wavelength

Visible Spectrum

Light interacts with an object

electromagnetic radiation ϑ (zeta) = 1.0 or 100%

Absorbed + Reflected + Transmitted & (zeta)

Color and Appearance

Transparency Translucency Opaqueness Surface Texture

Color and Color Appearance

The three elements of color vision

Light Source

Observer

Object

Human Observer

Douma, Michael, curator. "Light Bulb," Cause of Color, 2008, http://www.webexhibits.org/causesofcolor/3.html, (accessed January 1, 2008).

Visual Response Tristimulus Response Functions

(r,g,b)

Physiological Interpretation

Color Attribute Identification

Light Source

Spectral Power Distribution

https://www.paintingframesplus.com/painting-frames-plus-website-colors.php

Light Sources

Name	ССТ (К)	Note			
А	2856	Incandescent / Tungsten			
В	4874	{obsolete} Direct sunlight at noon			
С	6774	{obsolete} Average / North sky Daylight			
D50	5003	Horizon Light			
D55	5503	Mid-morning / Mid-afternoon Daylight			
D65	6504	Noon Daylight			
D75	7504	North sky Daylight			
E	5454	Equal energy			
F1	6430	Daylight Fluorescent			
F2	4230	Cool White Fluorescent			
F3	3450	White Fluorescent			
F4	2940	Warm White Fluorescent			
F5	6350	Daylight Fluorescent			
F6	4150	Lite White Fluorescent			
F7	6500	D65 simulator, Daylight simulator			
F8	5000	D50 simulator, Sylvania F40 Design 50			
F9	4150	Cool White Deluxe Fluorescent			
F10	5000	Philips TL85, Ultralume 50			
F11	4000	Philips TL84, Ultralume 40			
F12	3000	Philips TL83, Ultralume 30			

larrow Band

Kelvin

Standardizing Color Qualities

Color name designations			Numeral and/or letter color designations		
Level 1 (least precise)	Level 2	Level 3	Level 4	Level 5	Level 6 (most precise)
13	. 29	267ª	943–7056 ^a	≃100,000	≈5,000,000
Generic hue names and neutrals (see circled designations in diagram below)	All hue names and neutrals (see diagram below)	ISCC-NBS All hue names and neutrals with modifiers	Color-order systems (collections of color standards sampling the color solid systematically)	Visually interpolated Munsell Notation (From <i>Munsell</i> Book of Color)	CIE (x, y, Y) or instrumentally interpolated Munsell Notation
Brown	Yellowish brown	Light yellowish brown (centroid #76)	Munsell 10YR 6/4 ^b	9 ¹ 2YR 6.4/4 ¹	x = 0.395 y = 0.382 Y = 35.6 or y = 0.000
	Level 1 (least precise) 13 Generic hue names and neutrals (see circled designations in diagram below) Brown	Color name designationLevel 1Level 2(least precise)1329132929Generic hue names and neutrals (see diagram below)All hue names and neutrals (see diagram below)circled designations in diagram below)Strength 1000000000000000000000000000000000000	Color name designationsLevel 1 (least precise)Level 2 (least precise)Level 31329267°Generic hue names and neutrals (see diagram below)All hue names and neutrals (see diagram below)ISCC-NBS All hue names and neutrals with modifiersBrownYellowish brown $\#76$ Light yellowish brown (centroid $\#76$)	Color name designationsNumeralLevel 1Level 2Level 3Level 4(least precise)1329267°943–7056°1329267°943–7056°Generic hue names and neutrals (see diagram below)All hue names and neutrals (see diagram below)ISCC-NBS All hue names and neutrals with modifiersColor-order systems (collections of color standards sampling the color solid systematically)BrownYellowish brownLight yellowish brown (centroid #76)Munsell 10YR 6/4°	Color name designationsNumeral and/or letter color ofLevel 1 (least precise)Level 2Level 3Level 4Level 51329 267^{α} $943-7056^{\alpha}$ $\approx 100,000$ Generic hue names and neutrals (see diagram below)All hue names and neutrals (see diagram below)ISCC-NBS All hue names and neutrals with modifiersColor-order

"Figures indicate the number of color samples in each collection.

^b The smallest unit used in the Hue, Value, and Chroma parts of the Munsell Notation in Levels 4 (1 Hue step, 1 Value step, and 2 Chroma steps), 5 ($\frac{1}{2}$ Hue step, 0.1 Value step, and $\frac{1}{4}$ Chroma step), and 6 (0.1 Hue step, 0.05 Value step, and 0.1 Chroma step) indicates the accuracy to which the parts of the Munsell Notation are specified in that level.

Color-Order System

Munsell Book of Color

Color order system based on perception

Munsell Color System

Munsell Color System

International Commission on Illumination Commission Internationale de l'Eclairage Internationale Beleuchtungskommission

Division 1: Vision and Colour Division 2: Physical Measurement of Light and Radiation Division 3: Interior Environment and Lighting Design Division 4: Transportation and Exterior Applications Division 6: Photobiology and Photochemistry Division 8: Image Technology

Copyright Color Science Consultancy 2004

1931 2° Observer Field of View: ~ Ø 17mm @ 0.5M

1964 10° Observer Field of View: ~ Ø 90mm @ 0.5M

https://www.ledsmagazine.com/art icles/print/volume-13/issue-8/features/packagedleds/improving-color-consistencyin-led-based-general-lighting.html

The Observer Functions

Wavelength λ (nm)	_ x(λ)	y(λ)	_ z(λ)
380	0.0014	0.0000	0.0065
390	0.0042	0.0001	0.0201
400	0.0143	0.0004	0.0679
410	0.0435	0.0012	0.2074
420	0.1344	0.0040	0.6456
430	0.2839	0.0116	1.3856
440	0.3483	0.0230	1.7471
450	0.3362	0.0380	1.7721
460	0.2908	0.0600	1.6692
470	0.1954	0.0910	1.2876
480	0.0956	0.1390	0.8130
490	0.0320	0.2080	0.4652
500	0.0049	0.3230	0.2720
510	0.0093	0.5030	0.1582
520	0.0633	0.7100	0.0782
530	0.1655	0.8620	0.0422
540	0.2904	0.9540	0.0203
550	0.4334	0.9950	0.0087
560	0.5945	0.9950	0.0039
570	0.7621	0.9520	0.0021
580	0.9163	0.8700	0.0017
590	1.0263	0.7570	0.0011
600	1.0622	0.6310	0.0008
610	1.0026	0.5030	0.0003
620	0.8544	0.3810	0.0002
630	0.6424	0.2650	0.0000
640	0.4479	0.1750	0.0000
650	0.2835	0.1070	0.0000
660	0.1649	0.0610	0.0000
670	0.0874	0.0320	0.0000
680	0.0468	0.0170	0.0000
690	0.0227	0.0082	0.0000
700	0.0114	0.0041	0.0000
710	0.0058	0.0021	0.0000
720	0.0029	0.0010	0.0000
730	0.0014	0.0005	0.0000
740	0.0007	0.0002	0.0000
750	0.0003	0.0001	0.0000
760	0.0002	0.0001	0.0000
770	0.0001	0.0000	0.0000
780	0.0000	0.0000	0.0000

Reflectance Curve

Calculating the Tristimulus Factors

CIE color-matching functions are defined from 360-830 nm in 1nm increments (ISO/CIE10527)

In practice, color computers are set up to measure 400-700nm

ASTM E 308 equations used to calculate the tristimulus values accommodate these outer regions by using precalculated tristimulus weighted values

By convention, for a reflecting object, the assigned value of Y=100 as maximum is used for a non-fluorescing white. There are no restricting maximum values for X and Z.

1. Watch out for the case where y=0. In that case, you may want to set X=Y=Z=0.

2. The output (X, Y, Z) values are in the same nominal range as the input Y (typically, [0.0, 1.0], [0.0, 100.0] or physical units).

HUNTER Color Scale

Evolved during the 1950s and 1960s More visually uniform color scale than the XYZ color scale (x,y,Y) Hunter L, a, b color space is organized in a cube form

HUNTER Equations

$$L = 100 \sqrt{\frac{Y}{Y_n}}$$
$$a = K_a \left(\frac{X / X_n - Y / Y_n}{\sqrt{Y / Y_n}} \right)$$
$$b = K_b \left(\frac{Y / Y_n - Z / Z_n}{\sqrt{Y / Y_n}} \right)$$

Total Difference or Delta

$$\Delta E = \sqrt{\Delta L^2 + \Delta a^2 + \Delta b^2}$$

Differences or Deltas

$$\Delta L = L_{sample} - L_{standard}$$

$$\Delta a = a_{sample} - a_{standard}$$

$$\Delta b = b_{sample} - b_{standard}$$

$$+L \ lighter \ -L \ darker$$

$$+a \ redder \ -a \ greener$$

$$+b \ yellower \ -b \ bluer$$

CIE Calculations (1976)

$$L^* = 116(Y/Y_n)^{1/3} - 16$$

$$a^* = 500[(X/X_n)^{1/3} - (Y/Y_n)^{1/3}]$$

$$b^* = 200[(Y/Y_n)^{1/3} - (Z/Z_n)^{1/3})]$$

Cartesian or rectangular coordinates

 $C^* = [(a^*)^2 + (b^*)^2]^{1/2}$ h^o = arctan (b*/a*)

Polar coordinates

Use L-a-b when chroma <10 Use L-C-h when chroma >10 uniformly shaped description metric hue numbers approach zero

The asterisk (*) after L, a and b are pronounced star and are part of the full name, since they represent L*, a* and b*, to distinguish them from Hunter's L, a, and b

Color Guide by Ladson, Jack; and Kita, Hideo published by: SUGA Test Instruments Co., Ltd., Tokyo, Japan. "

CIELab Color Difference Equations (Delta)

$$DL^{*} = L^{*}_{sample} - L^{*}_{standard}$$

$$Da^{*} = a^{*}_{sample} - a^{*}_{standard}$$

$$Db^{*} = b^{*}_{sample} - b^{*}_{standard}$$

$$DC^{*} = C^{*}_{sample} - C^{*}_{standard}$$

$$DH_{ab}^{*} = [(DE_{ab^{*}})^{2} - (DL^{*})^{2} - (DC_{ab^{*}})^{2}]^{1/2}$$

Standard plaque

Sample plaque

Deltas (total color difference)

Strength values included for example 85% strength (K/S)

DE Total Color Difference

DE CIE 1976 Standard CIE color difference method, which is simply the distance between the two colors, calculated in three-dimensional CIELAB color space.

$$DE^* = [(DL^*)^2 + (Da^*)^2 + (Db^*)^2]^{1/2}$$

$$DE^* = [(DL^*)^2 + (DC^*_{ab})^2 + (DH_{ab}^*)^2]^{1/2}$$

McAdams Ellipses

OSA[®] The Optical Society

Color Tolerance Equation

Color Measurement Committee (CMC)

UK Society of Dyers and Colourists \rightarrow C.I. Numbers

DE CMC ISO standard 105-J03, uses a *lightness weight* "l" and a *chroma weight* "c" for use with perceptibility data.

Originated in the textiles industry for varying surface textures

<u>l:c ratios for example</u>1.3:1 for glossy surfaces and2:1 for matte surfaces.

Color Tolerance Equation

DE CIE 2000 Modification to the DE CIE 1976 with implementations $k_L = k_C = k_H = 1.0$

$$DE^*_{00} = \left[\frac{DL'}{k_L S_L} \right]^2 + \left[\frac{DC'}{k_C S_C} \right]^2 + \left[\frac{DH'}{k_H S_H} \right]^2 + R_T \frac{DC'}{k_C S_C} \frac{DH'}{k_H S_H} \right]^{1/2}$$

Total Color Difference Delta E* 1976

• DE* = 1

• most observers can begin to detect a slight difference

- DE* = 2
 - Obvious differences to the majority of observers

Color Tolerance Equations

CMC DE_{cmc} = 1 (*Color Measurement Committee*)
Developed for the textiles industry

- CIELab DE*₂₀₀₀ = 1
 - Current CIE recommended tolerance equation
 - 50% of trained color inspectors visually observe color differences

elliptical shaped specification

Standardization

Light Source Spectral Power Distribution Color Temperature

Standard Observer

Psychological dimensions of color (hue, saturation, brightness)

Unfiorm Color Space International Commission on Illumination (CIELab)

Compare and Communicate Color Differences

Return to Index

Disclaimer

The information in this presentation is furnished in good faith based on current technology, experience and knowledge thought to be true. The Color and Appearance Division (CAD) of the Society of Plastics Engineers (SPE) makes no warranty or assumes no responsibility of any kind, expressed or implied, regarding this information. CAD and/or the SPE does not assume any responsibility for any subsequent processing or compounding of any resources or materials in order to produce compound(s) or any finished article(s). Nor does CAD or SPE imply this information may suggest any legally binding assurance of certain properties or suitability for any specific purpose. It is the responsibility of those using this information to ensure their actions complies with any proprietary rights and/or existing laws or legislation.

Credits

Past Chairs/Contributors

Robert Charvat, Colorants – Pigments and Dyes Steve Goldstein, Inorganic - Organic Pigment Particles Jack Ladson, Color Science Consultancy Betty Puckerin, Ampacet Corporation

Education Committee

- Earl Balthazar, Datacolor
- Breeze Briggs, BASF Colors and Effects
- Steve Esker, Paramount
- Jack Ladson, Color Science Consultancy
- Bruce Mulholland, Celanese
- Alex Prosapio, Sudarshan
- Betty Puckerin, Ampacet Corporation
- Elizabeth Serdar, Omya
- Mark Tyler, Silberline
- Brian West, Techmer PM
- Kimberly Williamson, Techmer PM
- Michael Willis, Sun Chemical, Education Committee Chair